Arithmetic progressions on Huff curves
نویسندگان
چکیده
We look at arithmetic progressions on elliptic curves known as Huff curves. By an arithmetic progression on an elliptic curve, we mean that either the x or y-coordinates of a sequence of rational points on the curve form an arithmetic progression. Previous work has found arithmetic progressions on Weierstrass curves, quartic curves, Edwards curves, and genus 2 curves. We find an infinite number of Huff curves with an arithmetic progression of length 9.
منابع مشابه
Geometric Progressions on Elliptic Curves.
In this paper, we look at long geometric progressions on different model of elliptic curves, namely Weierstrass curves, Edwards and twisted Edwards curves, Huff curves and general quartics curves. By a geometric progression on an elliptic curve, we mean the existence of rational points on the curve whose x-coordinate (or y-coordinate) are in geometric progression. We find infinite families of t...
متن کاملOn rainbow 4-term arithmetic progressions
{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...
متن کاملArithmetic Progressions of Three Squares
In this list there is an arithmetic progression: 1, 25, 49 (common difference 24). If we search further along, another arithmetic progression of squares is found: 289, 625, 961 (common difference 336). Yet another is 529, 1369, 2209 (common difference 840). How can these examples, and all others, be found? In Section 2 we will use plane geometry to describe the 3-term arithmetic progressions of...
متن کاملOn Simultaneous Arithmetic Progressions on Elliptic Curves
and we consider two equations related by such a change of variables to represent the same curve (equivalently, we will deal with elliptic curves up to so-called Weierstrass changes of variables). Consider P0, . . . , Pn ∈ E(K), with Pi = (xi, yi) such that x0, . . . , xn is an arithmetic progression. We say that P0, . . . , Pn are in x-arithmetic progression (x-a.p.) and also say that E has an ...
متن کاملArithmetic Progressions on Edwards Curves
Several authors have investigated the problem of finding elliptic curves over Q that contain rational points whose x-coordinates are in arithmetic progression. Traditionally, the elliptic curve has been taken in the form of an elliptic cubic or elliptic quartic. Moody studied this question for elliptic curves in Edwards form, and showed that there are infinitely many such curves upon which ther...
متن کامل